МОДЕЛИ ЧИСЛЕННЫХ РАСЧЕТОВ ФИЗИКО-МЕХАНИЧЕСКИХ СИСТЕМ

УДК 539.3

РАСЧЕТ НАПРЯЖЕННОГО СОСТОЯНИЯ В ПОЛИМЕРНОМ ВЯЗКОУПРУГОМ ТЕЛЕ С КРУГОВЫМ ВЯЗКОУПРУГИМ ВКЛЮЧЕНИЕМ С УЧЕТОМ ГЕОМЕТРИЧЕСКОЙ НЕЛИНЕЙНОСТИ ¹

Шавырин Д.А., Зингерман К.М.

Кафедра вычислительной математики

Поступила в редакцию 01.06.2014, после переработки 10.06.2014.

Сформулирован метод аналитического решения плоской задачи теории вязкоупругости о напряженно-деформированном состоянии бесконечно протяженного вязкоупругого тела, в котором имеется круговое вязкоупругое включение с другими свойствами, когда на бесконечности заданы напряжения, при конечных деформациях. При решении используются метод малого параметра, метод интегральных преобразований Лапласа и комплексные потенциалы Колосова-Мусхелишвили. На основе полученного решения проведен анализ распределения напряжений в различные моменты времени.

Ключевые слова: теория вязкоупругости, плоская задача, вязкоупругое включение, аналитическое решение, комплексные потенциалы, компьютерная алгебра, конечные деформации, геометрическая нелинейность.

Вестник ТвГУ. Серия: Прикладная математика. 2014. № 2. С. 5-16.

Введение

Одной из важных задач механики деформируемого твердого тела является расчет напряженно-деформированного состояния (НДС) в композиционных материалах [1–4,8–11,17–20]. Представляет интерес исследование НДС в вязкоупругих композитах, когда при моделировании учитываются вязкие свойства как матрицы, так и включения композита. Особый интерес представляют аналитические решенияэтих задач, которые важны для понимания качественных эффектов и проверки результатов, полученных с помощью численных методов. Учет нелинейных эффектов необходим для получения более точных результатов в задачах расчета различных конструкций [2,8–11,17–20]. Использование линейных моделей при исследовании напряженно-деформированного состояния под воздействием больших

¹Работа выполнена при частичной финансовой поддержке РФФИ (проект № 14-08-01191-а).

нагрузок дает значительную погрешность, которая уменьшается при учете геометрической нелинейности. В данной статье предлагается подход к решению плоских задач нелинейной теории вязкоупругости, на основе которого исследуется НДС вблизи вязкоупругого включения и внутри него с использованием аналитических методов. Решение строится на основе методики, приведенной в [5] и обобщенной на случай конечных деформаций с использованием системы компьютерной алгебры.

1. Постановка задачи

Исследуется напряженно-деформированное состояние бесконечно протяженного вязкоупругого тела (матрицы), в котором имеется круговое вязкоупругое включение с другими свойствами, когда на бесконечности заданы напряжения. Эта задача решается в квазистатической постановке при конечных плоских деформациях. Материалы матрицы и включения считаются сжимаемыми, их механические свойства описываются определяющими соотношениями, обобщающими на случай вязкоупругости соотношения для потенциала Мурнагана. Предполагается, что на границе между включением и матрицей выполнены условия идеального контакта: условия непрерывности вектора перемещений и вектора нормальных напряжений. Требуется решить задачу о квазистатическом деформировании тела при заданных напряжениях на бесконечности. Считается, что напряжения остаются ограниченными при стремлении к бесконечности. При таком условии решение соответствующей линейной вязкоупругой задачи будет единственным. Рассматривается общий случай, когда на бесконечности к телу прикладываются нормальные и касательные нагрузки.

Рис. 1: Схема нагружения тела с включением

В качестве математической модели вязкоупругой среды используется модель

стандартного линейного вязкоупругого тела, обобщенная на случай конечных деформаций. Это частный случай более общих моделей, описаных ранее в [2,3,12,13].

Здесь и в дальнейшем индексом M отмечаются величины, относящиеся к матрице, а индексом B – к включению. Если индексы не указаны, то выражения относятся как к матрице, так и к включению. Система координат выбрана таким образом, чтобы направление нагружения совпало с осью x, а начало координат совпало с центром включения.

Математическая постановка задачи описывается в координатах недеформированного состояния. Далее использованы следующие обозначения: u — вектор перемещений, Ψ — аффинор деформаций, $\stackrel{0}{E}$ — тензор деформаций Грина, $\stackrel{0}{\Sigma}$ — тензор напряжений Пиолы–Кирхгофа второго рода, σ — тензор истинных напряжений, $\stackrel{0}{\nabla}$ — градиент, I — единичный тензор, $\stackrel{0}{N}$ — нормаль к исходной границе включения.

Уравнение равновесия имеет вид

$$\stackrel{0}{\nabla} \cdot \left[\stackrel{0}{\Sigma} \cdot \Psi \right] = 0, \tag{1}$$

здесь

$$\overset{0}{\Sigma} = (1+\Delta)\Psi^{*-1} \cdot \sigma \cdot \Psi^{-1}.$$
(2)

Закон вязкоупругости записывается в форме:

$${}^{0}_{\Sigma}(t) = \int_{-\infty}^{t} \lambda(t-\tau) \left(\frac{\partial E(\tau)}{\partial \tau} : I \right) I d\tau + 2 \int_{-\infty}^{t} G(t-\tau) \frac{\partial E(\tau)}{\partial \tau} d\tau,$$
(3)

здесь ядра релаксации λ – объемное и G – сдвиговое

$$\lambda(t) = \lambda_0 + \lambda_1 e^{-\alpha t}, \quad G(t) = G_0 + G_1 e^{-\beta t}.$$
(4)

Модули λ_i и G_i пр
иi=0,1,а также α и β могут принимать различные значения в матрице и во включении.

Кинематические соотношения имеют вид

$${}^{0}_{E} = \frac{1}{2} \left(\Psi \cdot \Psi^{*} - I \right), \quad \Psi = I + {}^{0}_{\nabla} u.$$
(5)

В постановку задачи входят также условия на бесконечности

$$\left. \begin{array}{c} {}^{0}{\Sigma}_{M} \right|_{\infty} = {}^{0}{\Sigma}_{M}^{\infty}, \tag{6}$$

а также условия непрерывности вектора перемещений uи вектора нормальных напряжений $\stackrel{0}{N}\cdot\stackrel{0}{\Sigma}\cdot\Psi$ на границе матрицы и включения

$$\overset{0}{N} \cdot \overset{0}{\Sigma}_{M} \cdot \Psi_{M}|_{\Gamma} = \overset{0}{N} \cdot \overset{0}{\Sigma}_{M} \cdot \Psi_{M}|_{\Gamma},$$

$$u_{M}|_{\Gamma} = u_{B}|_{\Gamma}.$$

$$(7)$$

2. Метод решения

Для решения задачи применяется метод возмущений (малого параметра). Выбирается малый параметр μ в виде

$$\mu = \max_{i,j} \left| \sum_{ij}^{\infty} \right| / G_0^M \tag{8}$$

и для всех величин, входящих в постановку задачи, записывается разложение в ряд по этому параметру. Например, для вектора перемещений *u* такое разложение может быть записано в форме

$$u = u^{(0)} + u^{(1)} + \dots, \quad u^{(j)} \sim \mu^{j+1}.$$
 (9)

В результате решение нелинейной задачи сводится к последовательному решению линеаризованных задач.

Решение линеаризованной задачи для каждого приближения определяется методом Колосова–Мусхелишвили [7] с использованием алгоритмов, изложенных в [9–11].

Так как определяющие соотношения в задаче заданы в виде интегралов свертки по времени, можно эффективно воспользоваться методом интегральных преобразований Лапласа [2]. Для внешней нагрузки и ядер релаксации используем их функции в изображениях. Для решения задачи в изображениях вводится в рассмотрение комплексная переменная $z = x + iy = re^{i\vartheta}$, напряжения и перемещения выражаются через комплексные потенциалы — аналитические функции $\varphi_M(z)$, $\psi_M(z)$ для матрицы и $\varphi_B(z)$, $\psi_B(z)$ для включения.

Комплексные потенциалы определяются в виде рядов Лорана по степеням z. Методика решения из [5] обобщена на случай нормальных и касательных нагрузок.

$$\begin{split} \varphi_M^{(0)}(z) &= \frac{p+q}{4} \sum_{k=-1}^{\infty} a_k^{(0)} z^{-k}, \quad \psi_M^{(0)}(z) = \frac{q-p+2is}{2} \sum_{k=-1}^{\infty} b_k^{(0)} z^{-k}, \\ \varphi_B^{(0)}(z) &= \frac{p+q}{4} \sum_{k=0}^{\infty} c_k^{(0)} z^k, \quad \psi_B^{(0)}(z) = \frac{q-p+2is}{2} \sum_{k=0}^{\infty} d_k^{(0)} z^k. \end{split}$$
(10)

Формулы (10) относятся к нулевому приближению. Здесь *p*, *q* – нормальные напряжения на бесконечности, *s* – касательные напряжения на бесконечности.

Подставляя потенциалы, представленные в виде рядов (10), в граничные условия, получаем систему линейных алгебраических уравнений для нахождения выражений для коэффициентов рядов через нагрузки и ядра релаксации. Большинство коэффициентов получается нулевыми. Так как граничные условия вполне определяют напряженное состояние тела, а смещения определяются с точностью до жесткого перемещения, зафиксируем величины $\varphi_M(0) = 0, \psi_M(0) = 0, \varphi_B(0) = 0, \psi_B(0) = 0$ и, кроме того, мнимые части величин $\varphi'_M(0) = 0, \varphi'_B(0) = 0$ [7]. Принимая радиус включения равным R, и из условий на бесконечности $a_{-1}^{(0)} = 1$,

 $b_{-1}^{(0)} = 1$, имеем выражения для ненулевых коэффициентов:

$$a_{1}^{(0)} = \frac{2R^{2} (p-q+2s) (G_{M}-G_{B})}{(p+q) (G_{M}+G_{B}\varkappa_{M})},$$

$$b_{1}^{(0)} = \frac{R^{2} (p+q) (p-q+2s) (G_{B} (\varkappa_{M}-1)-G_{M} (\varkappa_{B}-1))}{\left((p-q)^{2}+4s^{2}\right) (2G_{B}+G_{M} (\varkappa_{B}-1))},$$

$$b_{3}^{(0)} = \frac{R^{4} \left((p-q)^{2}+4s (p-q-s)\right) (G_{B}-G_{M})}{\left((p-q)^{2}+4s^{2}\right) (G_{M}+G_{B}\varkappa_{M})},$$

$$c_{1}^{(0)} = \frac{G_{B} (\varkappa_{M}+1)}{2G_{B}+G_{M} (\varkappa_{B}-1)},$$

$$d_{1}^{(0)} = \frac{G_{B} (\varkappa_{M}+1)}{G_{M}+G_{B}\varkappa_{M}}.$$
(11)

Отметим, что можно ограничиться в суммах (10) конечным числом слагаемых до k = 3 включительно без потери точности, поскольку коэффициенты при старших степенях z будут нулевыми.

Выражения, связывающие потенциалы с напряжениями и перемещениями, впервые получены Г.В. Колосовым [6–8].

Для напряжений:

$$\sigma_{11}^{M} + \sigma_{22}^{M} = 2 \left[\varphi'_{M}(z) + \overline{\varphi'_{M}(z)} \right], \quad \sigma_{22}^{M} - \sigma_{11}^{M} + 2i\sigma_{12}^{M} = 2 \left[\overline{z}\varphi''_{M}(z) + \psi'_{M}(z) \right],$$

$$\sigma_{11}^{B} + \sigma_{22}^{B} = 2 \left[\varphi'_{B}(z) + \overline{\varphi'_{B}(z)} \right], \quad \sigma_{22}^{B} - \sigma_{11}^{B} + 2i\sigma_{12}^{B} = 2 \left[\overline{z}\varphi''_{B}(z) + \psi'_{B}(z) \right].$$
(12)

Для перемещений:

$$u_1^M + iu_2^M = \frac{1}{2G_M} \left[\varkappa_M \varphi_M(z) - z \overline{\varphi'_M(z)} - \overline{\psi_M(z)} \right],$$

$$u_1^B + iu_2^B = \frac{1}{2G_B} \left[\varkappa_B \varphi_B(z) - z \overline{\varphi'_B(z)} - \overline{\psi_B(z)} \right].$$
(13)

Все приведенные выше выражения даны в изображениях.

Подставляя в эти формулы выражения для потенциалов (10) получаем выражения в изображениях для напряжений и перемещений. Применяя обратное преобразование Лапласа, получаем решение в оригиналах для нулевого приближения.

Для первого приближения решение находится следующим образом. Тильдой помечены те части первого приближения соответствующих величин, которые определяются нулевым приближением. Если в качестве аргумента функции используется *s*, то предполагается, что речь идет об изображении по Лапласу.

1. Определяется аффинор деформаций $\Psi^{(0)}$:

$$\Psi^{(0)} = \nabla u^{(0)}.$$
 (14)

2. Определяется тензор деформаций Грина $\check{\widetilde{E}}^{(1)}$:

$${}^{0}_{\widetilde{E}}{}^{(1)} = \frac{1}{2}\Psi^{(0)} \cdot \Psi^{(0)*}.$$
(15)

3. Применяя к тензору Грина преобразование Лапласа, определяется в изображениях поправка от учета эффектов второго порядка для тензора Пиолы- $\overset{0}{\Sigma}^{(1)}$:

$$\overset{0}{\widetilde{\Sigma}}{}^{(1)}(s) = \lambda(s) \left(\overset{0}{\widetilde{E}}{}^{(1)}(s) : I \right) I + 2G(s) \overset{0}{\widetilde{E}}{}^{(1)}(s).$$
(16)

4. Определяется тензор Пиола $\widetilde{P}^{(1)}$:

$$\widetilde{P}^{(1)}(s) = \widetilde{\widetilde{\Sigma}}^{(1)}(s) + \mathcal{L}\left(\widetilde{\Sigma}^{(0)} \cdot \Psi^{(0)}\right).$$
(17)

В этом выражении под *L* понимается прямое преобразование Лапласа.

5. Определяется вектор фиктивных массовых сил $f^{(1)}$:

$$f^{(1)}(s) = -\nabla^{0} \cdot \tilde{P}^{(1)}(s).$$
(18)

6. Определяется тензор напряжений на бесконечности $\sigma^{\infty(1)}$:

$$\sigma^{\infty(1)}(s) = -\widetilde{P}^{(1)}(s)\Big|_{\infty}.$$
(19)

7. Из вектора $f^{(1)}$ находим частное решение неоднородного уравнения:

$$u_{\rm H.}^{(1)}(s) = \frac{1}{4G(s)(\lambda(s) + 2G(s))} \times \left[(\lambda(s) + 3G(s)) \iint f^{(1)}(s) \, dz \, d\bar{z} - (\lambda(s) + G(s)) \iint f^{(1)*}(s) \, dz \, d\bar{z} \right].$$
(20)

8. Находим тензор деформаций с учетом поправки от неоднородного решения:

$${}^{0}_{E}{}^{(1)}(s) = {}^{0}_{\widetilde{E}}{}^{(1)}(s) + \frac{1}{2} \left({}^{0}_{\nabla} u^{(1)}_{_{\mathrm{H}.}}(s) + {}^{0}_{\nabla} u^{(1)\,*}_{_{\mathrm{H}.}}(s) \right).$$
(21)

9. Находим тензор обобщенных напряжений $\sum_{i=1}^{0} (1)$:

$${}^{0}_{\Sigma}{}^{(1)}(s) = {}^{0}_{\widetilde{\Sigma}{}^{(1)}}(s) + \lambda ({}^{0}_{\nabla} \cdot u^{(1)}_{{}^{\text{H}_{\text{c}}}}(s))I + G({}^{0}_{\nabla} u^{(1)}_{{}^{\text{H}_{\text{c}}}}(s) + u^{(1)}_{{}^{\text{H}_{\text{c}}}}(s){}^{0}_{\nabla}).$$
(22)

10. Используя комплексные потенциалы, находим решение однородной системы уравнений по аналогии с нулевым приближением. Эти потенциалы представляются в виде:

$$\varphi_M^{(1)}(z) = \sum_{k=-1}^{\infty} a_k^{(1)} z^{-k}, \quad \psi_M^{(1)}(z) = \sum_{k=-1}^{\infty} b_k^{(1)} z^{-k},$$

$$\varphi_B^{(1)}(z) = \sum_{k=0}^{\infty} c_k^{(1)} z^k, \quad \psi_B^{(1)}(z) = \sum_{k=0}^{\infty} d_k^{(1)} z^k.$$
(23)

Подставляя потенциалы в граничные условия и решая систему линейных алгебраических уравнений, находим выражения для коэффициентов рядов через нагрузки и ядра релаксации. Расчеты показали, что в данном случае в суммах (23) можно ограничиться конечным числом слагаемых до k = 9 включительно без потери точности.

Подставляя в формулы (12)-(13) выражения для потенциалов (23), получаем выражения в изображениях для напряжений и перемещений. Применяя обратное преобразование Лапласа, находим решение в оригиналах.

Решение найдено в аналитической форме, но учитывая громоздкость выражений, ограничимся только численными результатами.

3. Результаты расчетов

Для решения задачи было разработано программное обеспечение в среде системы компьютерной алгебры Maple [16]. Были вычислены первые два приближения.

Были выполнены расчеты при следующих значениях вязкоупругих констант: $\alpha_M = \beta_M = \alpha_B = \beta_B, \lambda_0^M/G_0^M = 1.5, \lambda_1^M/G_0^M = 14, G_1^M/G_0^M = 4, \lambda_0^B/G_0^M = 15, \lambda_1^B/G_0^M = 140, G_0^B/G_0^M = 10, G_1^B/G_0^M = 40.$ В данном случае включение более жесткое, чем матрица. На бесконечности в момент t = 0 прикладывается одноосная растягивающая нагрузка величины $0.1G_0^M$ вдоль оси x.

Puc. 2: Изменение напряжений $\overset{0}{\Sigma_{11}}$ и $\overset{0}{\Sigma_{22}}$ вблизи центра включения

На Рис. 2 представлен график изменения напряжений со временем вблизи центра включения. На Рис. 3 и Рис. 4 показано распределение напряжений $\overset{0}{\Sigma}_{11}^{0}$ и $\overset{0}{\Sigma}_{22}^{22}$ вдоль оси x в моменты времени t = 0 и t = 30. На Рис. 5 и Рис. 6 показано распределение соответствующих напряжений вдоль оси y.

Сплошная линия на графиках соответствует линейному решению, пунктирная – решению с учетом нелинейных эффектов. Поправка от учета нелинейных эффектов для компонент тензора напряжений не превосходит 17%, а для вектора перемещений (на рисунках не показано) – 4%.

Рис. 3: Распределение напряжений $\overset{0}{\Sigma}_{11}^{}$ и $\overset{0}{\Sigma}_{22}^{}$ вдоль оси x в момент времени t=0

Рис. 4: Распределение напряжений $\overset{0}{\Sigma_{11}}$ и $\overset{0}{\Sigma_{22}}$ вдоль оси x в момент времени t=30

Рис. 5: Распределение напряжений $\overset{0}{\Sigma}_{11}^{}$ и $\overset{0}{\Sigma}_{22}^{}$ вдоль оси у в момент времени t=0

Рис. 6: Распределение напряжений $\overset{0}{\Sigma_{11}}$ и $\overset{0}{\Sigma_{22}}$ вдоль оси у в момент времени t=30

Заключение

Разработаны метод, алгоритм и программное обеспечение для приближенного аналитического решения плоской задачи о квазистатическом деформировании бесконечно протяженного вязкоупругого тела с круговым вязкоупругим включением при заданных напряжениях на бесконечности при конечных деформациях. Исследовано распределение напряжений в различные моменты времени. Результаты решения этой задачи могут быть использованы при расчете на прочность композиционных материалов с наноразмерными частицами наполнителя, а также для анализа существующих численных решений аналогичной задачи. Дана оценка нелинейных эффектов, исследовано изменение напряженно-деформированного состояния с течением времени.

Список литературы

- Победря Б.Е. Механика композиционных материалов. М.: Изд-во МГУ, 1984. 336 с.
- [2] Ильюшин А.А., Победря Б.Е. Основы математической теории термовязкоупругости. М.: Наука, 1970. 280 с.
- [3] Колтунов М.А., Майборода В.П., Зубчанинов В.Г. Прочностные расчеты изделий из полимерных материалов. М.: Машиностроение, 1983. 239 с.
- [4] Мошев В.В. и др. Структурные механизмы формирования механических свойств зернистых полимерных композитов. Екатеринбург: УрО РАН, 1997. 508 с.
- [5] Шавырин Д.А. Аналитическое решение плоской задачи о квазистатической деформации бесконечно протяженного вязкоупругого тела с круговым вязкоупругим включением средствами компьютерной алгебры // Вестник ТвГУ. Серия: Прикладная математика. 2013. №1(28). С. 45–54.
- [6] Колосов Г.В. Об одном приложении теории функций комплексного переменного к плоской задаче теории упругости. Юрьев: Маттисен, 1908. 187 с.
- [7] Мусхелишвили Н.И. Некоторые основные задачи математической теории упругости. М.: Наука, 1966. 709 с.
- [8] Зингерман К.М., Левин В.А. Последовательное образование двух неравных эллиптических отверстий в теле из вязкоупругого несжимаемого материала. Конечные деформации // Известия Российской академии наук. Механика твердого тела. 1999. №4. С. 162–169.
- [9] Зингерман К.М., Левин В.А. Перераспределение конечных упругих деформаций после образования включений. Приближенное аналитическое решение // Прикладная математика и механика. 2009. Т. 73, № 6. С. 983–1001.
- [10] Левин В.А., Калинин В.В., Зингерман К.М., Вершинин А.В. Развитие дефектов при конечных деформациях. Компьютерное и физическое моделирование. М.: Физматлит, 2007. 392 с.

- [11] Levin V.A., Zingerman K.M. A class of methods and algorithms for the analysis of successive origination of holes in a pre-stressed viscoelastic body. Finite strains // Communications in Numerical Methods in Engineering. 2008. Vol. 24, № 12. Pp. 2240–2251.
- [12] Кристенсен Р. Введение в теорию вязкоупругости. М.: Мир, 1974. 338 с.
- [13] Савин Г.Н. Распределение напряжений около отверстий. Киев: Наукова думка, 1968. 887 с.
- [14] Седов Л.И. Механика сплошной среды. Т. 2. М.: Наука, 1994. 560 с.
- [15] Эшелби Дж. Континуальная теория дислокаций. М.: ИЛ, 1963. 248 с.
- [16] Матросов А.В. Maple 6. Решение задач высшей математики и механики. СПб.: БХВ-Петербург, 2001. 528 с.
- [17] Адамов А.А. Построение прикладной нелинейной модели термовязкоупругого поведения резины при малых конечных деформациях [Электронный ресурс] // Физико-химическая кинетика в газовой динамике, 2008. №7. С. 25. URL: http://chemphys.edu.ru/media/files/2008-09-01-028.pdf (дата обращения: 28.01.2014)
- [18] Свистков А.Л. Структурно-феноменологическое моделирование механического поведения резин // Высокомолекулярные соединения. 2008. Т. 50, № 5. С. 892–902.
- [19] Федоров А.Е., Адамов А.А. Моделирование поведения кожи человека при больших деформациях // Российский журнал биомеханики. 2007. Т. 11, № 1. С. 76–84.
- [20] Rendek M., Lion A. Amplitude dependence of filler-reinforced rubber: Experiments, constitutive modelling and FEM – Implementation // International Journal of Solids and Structures. 2010. Vol. 47, № 21. Pp. 2918–2936.

Библиографическая ссылка

Шавырин Д.А., Зингерман К.М. Расчет напряженного состояния в полимерном вязкоупругом теле с круговым вязкоупругим включением с учетом геометрической нелинейности // Вестник ТвГУ. Серия: Прикладная математика. 2014. № 2. С. 5–16.

Сведения об авторах

1. Зингерман Константин Моисеевич

зав. кафедрой вычислительной математики Тверского госуниверситета.

Россия, 170100, г. Тверь, ул. Желябова, д. 33, ТвГУ, факультет ПМиК. E-mail: zingerman@rambler.ru.

2. Шавырин Дмитрий Алексеевич

аспирант кафедры вычислительной математики Тверского госуниверситета.

Россия, 170100, г. Тверь, ул. Желябова, 33, ТвГУ, факультет ПМиК.

STRESS ANALYSIS OF A POLYMERIC VISCOELASTIC SOLID WITH CIRCULAR VISCOELASTIC INCLUSION ALLOWING FOR GEOMETRICAL NONLINEARITY

Shavyrin Dmitriy Alekseevich

Postgraduate student of Computational Mathematics chair, Tver State University Russia, 170100, Tver, 33 Zhelyabova str.

Zingerman Konstantin Moiseevich

Head of Computational Mathematics chair, Tver State University Russia, 170100, Tver, 33 Zhelyabova str. E-mail: zingerman@rambler.ru

Received 01.06.2014, revised 10.06.2014.

The method of the analytical solution is formulated and the algorithm is developed for a specific plane problem of the theory of viscoelasticity. This is the problem of the stress-strain state in infinitely extended body with circular viscoelastic inclusion when the stresses at infinity are fixed at finite strains. Solution uses perturbation technique, Laplace transform and complex Kolosov-Muskhelishvili potentials. The stress distribution in different times is analyzed on the basis of the obtained solution.

Keywords: theory of viscoelasticity, plane problem, viscoelastic inclusion, analytical solution, complex potentials, computer algebra, finite strain, geometric nonlinearity.

Bibliographic citation

Shavyrin D.A., Zingerman K.M. Stress analysis of a polymeric viscoelastic solid with circular viscoelastic inclusion allowing for geometrical nonlinearity. *Vestnik TvGU. Seriya: Prikladnaya matematika* [Herald of Tver State University. Series: Applied Mathematics], 2014, no. 2, pp. 5–16. (in Russian)